solstice
Solstice, a library for creating and scaling experiments in JAX.
Whole API¤
Abstract
This is all of Solstice. Everything is accessible through the solstice.*
namespace.
Experiments¤
The Experiment
is at the heart of Solstice. The API is similar to the
pl.LightningModule
loved by
PyTorch-Lightning users, but we
do less 'magic' to keep it as transparent as possible. If in doubt, just read the source
code - it's really short!
Experiment
¤
Bases: eqx.Module
, ABC
Base class for Solstice experiments.
An Experiment holds all stateful models, optimizers, etc... for a run and implements this interface. To make your own experiments, subclass this class and implement the logic for initialisation, training, and evaluating.
Tip
This is a subclass of equinox.Module
, so you are free to use pure JAX
transformations such as jax.jit
and jax.pmap
, as long as you remember to
filter out static PyTree fields (e.g. with eqx.filter_jit
).
Example
Pseudocode for typical Experiment
usage:
exp = MyExperiment(...) # initialise experiment state
for step in range(num_steps):
exp, outs = exp.train_step(batch)
#do anything with the outputs here
# exp is just a pytree, so we can save and restore checkpoints like so...
equinox.tree_serialise_leaves("checkpoint_0.eqx", exp)
This class just specifies a recommended interface for experiment code. Experiments
implementing this interface will automatically work with the Solstice training
loops. You can always create or override methods as you wish and no methods are
special-cased. For example it is common to define a __call__
method to perform
inference on a batch of data.
Source code in solstice/experiment.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
__init__(*args, **kwargs) -> None
abstractmethod
¤
Initialise the experiment.
Example
Pseudocode implementation for initialising an MNIST classifier with flax and optax:
class MNISTExperiment(Experiment):
params: Any
opt_state: Any
opt_apply: Callable
model_apply: Callable
num_classes: int
def __init__(self, rng: int, model: flax.nn.Module,
optimizer = optax.GradientTransformation
) -> None:
key = jax.random.PRNGKey(rng)
dummy_batch = jnp.zeros((32, 784))
self.params = model.init(key, dummy_batch)
self.model_apply = model.apply
self.opt = optax.adam(learning_rate=1e-3)
self.opt_state = optimizer.init(self.params)
self.num_classes = 10
Source code in solstice/experiment.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
train_step(batch: Any) -> Tuple[Experiment, Any]
abstractmethod
¤
A training step takes a batch of data and returns the updated experiment and
any auxiliary outputs (usually a solstice.Metrics
object).
Tip
You will typically want to use jax.jit
, jax.pmap
, eqx.filter_jit
, or
eqx.filter_pmap
on this method. See the
solstice primer
for more info on filtered transformations. You can also read the tutorial on
different parallelism strategies.
Example
Pseudocode implementation of a training step:
class MNISTExperiment(Experiment):
@eqx.filter_jit(kwargs=dict(batch=True))
def train_step(self, batch: Tuple[np.ndarray, ...]
) -> Tuple[Experiment, solstice.Metrics]:
imgs, labels = batch
def loss_fn(params, x, y):
... # compute loss
return loss, logits
(loss, logits), grads = jax.value_and_grad(loss_fn, has_aux=True)(
self.params, imgs, labels
)
new_params, new_opt_state = ... # calculate grads and update params
preds = jnp.argmax(logits, axis=-1)
metrics = MyMetrics(preds, labels, loss)
return (
solstice.replace(self, params=new_params, opt_state=new_opt_state),
metrics,
)
Tip
You can use the solstice.replace
function as a way of returning an
experiment instance with modified state.
Parameters:
-
batch
(
Any
) –Batch of data. Usually, this will be either a tuple of (input, target) arrays or a dictionary mapping keys to arrays.
Returns:
-
Tuple[Experiment, Any]
–Tuple[Experiment, Any]: A new instance of the Experiment with the updated state and any auxiliary outputs, such as metrics.
Source code in solstice/experiment.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
eval_step(batch: Any) -> Tuple[Experiment, Any]
abstractmethod
¤
An evaluation step (e.g. for validation or testing) takes a batch of data and
returns the updated experiment and any auxiliary outputs. Usually, this will be
a solstice.Metrics
object. Like train_step()
, you should probably JIT this
method.
Tip
In most evaluation cases, the experiment returned will be unchanged, the main reason why you would want to modify it is to advance PRNG state.
Example
Pseudocode implementation of an evaluation step:
class MNISTExperiment(Experiment):
@eqx.filter_jit(kwargs=dict(batch=True))
def eval_step(self, batch: Tuple[np.ndarray, ...]
) -> Tuple[Experiment, Any]:
imgs, labels = batch
logits = ... # apply the model e.g. self.apply_fn(imgs)
loss = ... # compute loss
preds = jnp.argmax(logits, axis=-1)
metrics = MyMetrics(preds, labels, loss)
return self, metrics
Parameters:
-
batch
(
Any
) –Batch of data. Usually, this will be either a tuple of (input, target) arrays or a dictionary mapping keys to arrays.
Returns:
-
Tuple[Experiment, Any]
–Tuple[Experiment, Any]: A new instance of the Experiment with the updated state and any auxiliary outputs, such as metrics.
Source code in solstice/experiment.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
Metrics¤
Our Metrics API is similar to the one in CLU, although more sexy because we use equinox :) We favour defining one single object for handling all metrics for an experiment instead of composing multiple objects into a collection. This is more efficient because often we can calculate a battery of metrics from the same intermediate results. It is also simpler and easier to reason about.
Metrics
¤
Bases: eqx.Module
, ABC
Base class for metrics. A Metrics object handles calculating intermediate metrics from model outputs, accumulating them over batches, then calculating final metrics from accumulated metrics. Subclass this class and implement the interface for initialisation, accumulation, and finalisation.
Tip
This class doesn't have to handle 'metrics' in the strictest sense. You could
implement a Metrics
class to collect output images for plotting for example.
Example
Pseudocode for typical Metrics
usage:
metrics = None
for batch in dataset:
batch_metrics = step(batch) # step returns a Metrics object
metrics = metrics.merge(batch_metrics) if metrics else batch_metrics
if time_to_log:
metrics_dict = metrics.compute()
... # log your metrics here
metrics = None # reset the object
Source code in solstice/metrics.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
__init__(*args, **kwargs) -> None
abstractmethod
¤
Initialise a metrics object, typically with predictions and targets.
Example
Pseudocode for typical Metrics
initialisation, this example object will
keep track of the number of correct predictions and the total number of
predictions:
class MyMetrics(Metrics):
count: int
num_correct: int
def __init__(self, preds: jnp.ndarray, targets: jnp.ndarray) -> None:
self.count = preds.shape[0] # assumes batch is first dim
self.num_correct = jnp.sum(preds == targets)
Tip
In classification settings, the confusion matrix is a useful intermediate result to calculate during initialisation.
Source code in solstice/metrics.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
merge(other: Metrics) -> Metrics
abstractmethod
¤
Merge two metrics objects, returning a new metrics object.
Example
Pseudocode for typical Metrics
merging, in the example code, we can simply
sum the number of correct predictions and the total number of predictions:
class MyMetrics(Metrics):
def merge(self, other: Metrics) -> Metrics:
new_num_correct = self.num_correct + other.num_correct
new_count = self.count + other.count
return solstice.replace(self,
num_correct=new_num_correct, count=new_count)
Source code in solstice/metrics.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
compute() -> Any
abstractmethod
¤
Compute final metrics from accumulated metrics.
Example
Pseudocode for typical Metrics
finalisation, here we calculate accuracy
from the number of correct predictions and the total number of predictions:
class MyMetrics(Metrics):
def compute(self) -> Mapping[str, float]:
return {'accuracy': self.num_correct / self.count}
Tip
Typically, you will want to return a dictionary of metrics. Try to put any
expensive computations here, not in __init__
.
Source code in solstice/metrics.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
ClassificationMetrics
¤
Bases: Metrics
Basic metrics for multiclass classification tasks.
Metrics included:
-
Average Loss
-
Accuracy
-
Prevalence
-
F1 score
-
Sensitivity (TPR, recall)
-
Positive predictive value (PPV, precision)
Accuracy is reported as Top-1 accuracy which is equal to the micro-average of precision/recall/f1. Prevalence is reported on a per-class basis. Precision, Recall and F1 are reported three times: per-class, macro-average, and weighted average (by prevalence).
Not for multi-label classification.
Info
See https://en.wikipedia.org/wiki/Confusion_matrix for more on confusion matrices and classification metrics. See https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel for more on multiclass micro/macro/weighted averaging.
Source code in solstice/metrics.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
__init__(preds: jnp.ndarray, targets: jnp.ndarray, loss: float, num_classes: int) -> None
¤
Create a ClassificationMetrics object from model predictions and targets.
Parameters:
-
preds
(
jnp.ndarray
) –Non OH encoded predictions, shape: (batch_size,).
-
targets
(
jnp.ndarray
) –Non OH encoded targets, shape: (batch_size,).
-
loss
(
float
) –Average loss over the batch (scalar).
-
num_classes
(
int
) –Number of classes in classification problem.
Source code in solstice/metrics.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
Training¤
Training loops are usually boilerplate code that has little to do with your research.
We provide training and testing loops which integrate with a simple and flexible
callback system. Any solstice.Experiment
can be passed to the loops, but you can
always write your own if necessary. We provide a handful of pre-implemented callbacks,
but if they do not suit your needs, you can use them as inspiration to write your own.
Callback
¤
Bases: ABC
Base class for callbacks to solstice.train()
and `solstice.test(). Subclass
and implement this interface to inject arbitrary functionality into the training
and testing loops.
Tip
All callback hooks return None
, so they cannot affect the training itself.
Use callbacks to execute side effects like logging, checkpointing or profiling.
Example
Pseudocode callback implementation for logging with solstice.Metrics
:
class MyLoggingCallback(Callback):
def __init__(self, log_every_n_steps, ...):
self.metrics = None
self.log_every_n_steps = log_every_n_steps
... # set up logging, e.g. wandb.init(...)
def on_step_end(self, exp, global_step, training, batch, outs):
assert isinstance(outs, solstice.Metrics)
self.metrics = outs.merge(self.metrics) if self.metrics else outs
if (global_step + 1) % self.log_every_n_steps == 0:
metrics_dict = self.metrics.compute()
... # do logging e.g. wandb.log(metrics_dict)
self.metrics = None
Source code in solstice/trainer.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
__init__(*args, **kwargs) -> None
abstractmethod
¤
Initialize the callback.
Source code in solstice/trainer.py
59 60 61 62 |
|
on_epoch_start(exp: Experiment, epoch: int, mode: Literal[train, val, test]) -> None
¤
Called at the start of each epoch, i.e. before the model has seen any data for that epoch.
Parameters:
-
exp
(
Experiment
) –Current Experiment state.
-
epoch
(
int
) –Current epoch number.
-
mode
(
Literal[train, val, test]
) –String representing whether this is a training, validation or testing epoch.
Source code in solstice/trainer.py
64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
on_epoch_end(exp: Experiment, epoch: int, mode: Literal[train, val, test]) -> None
¤
Called at the end of each epoch, i.e. after the model has seen the full dataset for that epoch.
Parameters:
-
exp
(
Experiment
) –Current Experiment state.
-
epoch
(
int
) –Current epoch number.
-
mode
(
Literal[train, val, test]
) –String representing whether this is a training, validation or testing step.
Source code in solstice/trainer.py
78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
on_step_start(exp: Experiment, global_step: int, mode: Literal[train, val, test], batch: Any) -> None
¤
Called at the start of each training and validation step, i.e. before the batch has been seen.
Parameters:
-
exp
(
Experiment
) –Current Experiment state.
-
global_step
(
int
) –Current step number. This is the global step, i.e. the total number of training or validation or testing steps seen so far. Note that we keep separate step counts for training and validation, so it might not be unique.
-
mode
(
Literal[train, val, test]
) –String representing whether this is a training, validation or testing step.
-
batch
(
Any
) –Current batch of data for this step.
Source code in solstice/trainer.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
on_step_end(outs: Any, exp: Experiment, global_step: int, mode: Literal[train, val, test], batch: Any) -> None
¤
Called at the end of each training and validation step, i.e. after the batch has been seen.
Parameters:
-
exp
(
Experiment
) –Current Experiment state.
-
global_step
(
int
) –Current step number. This is the global step, i.e. the total number of training or validation or testing steps seen so far. Note that we keep separate step counts for training and validation, so it might not be unique.
-
mode
(
Literal[train, val, test]
) –String representing whether this is a training, validation or testing step.
-
batch
(
Any
) –Current batch of data for this step.
-
outs
(
Any
) –Auxiliary outputs from the experiment train/eval step. Usually, this should be a
solstice.Metrics
object.
Source code in solstice/trainer.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
LoggingCallback
¤
Bases: Callback
Logs auxiliary outputs from training or evaulation steps (either periodically
every n steps, or at the end of the epoch). Internally, this accumulates metrics
with metrics.merge()
, computes them with metrics.compute()
, and then passes
the final results to the given logging function.
Warning
Auxiliary outputs from the train and eval steps must be a solstice.Metrics
instance for this callback to work properly. We raise an AssertionError if this
is not the case.
Note
There are many different libraries you can use for writing logs (e.g. wandb, TensorBoard(X), ...). We offer no opinion on which one you should use. Pass in a logging function to use any arbitrary logger.
Source code in solstice/trainer.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
__init__(log_every_n_steps: int | None = None, logging_fn: Callable[[Any, int, Literal[train, val, test]], None] | None = None) -> None
¤
Initialize the logging callback.
Parameters:
-
log_every_n_steps
(
int | None
) –If given, accumulate metrics over n steps before logging. If None, log at end of epoch. Defaults to None.
-
logging_fn
(
Callable[[Any, int, Literal[train, val, test]], None] | None
) –Logging function. Takes the outputs of
metrics.compute()
, the current step or epoch number, and a string representing whether training, validating, or testing. The function should return nothing. If no logging_fn is given, the default behaviour is to log with the built in Python logger (INFO level). Defaults to None.
Example
The default logging function (used if None is given) logs using the built
in Python logger, with name "solstice" and INFO level
(notice that the output of metrics.compute()
must be printable):
logger = logging.getLogger("solstice")
default_logger = lambda metrics, step, mode: logging.info(
f"{mode} step {step}: {metrics}"
)
If the logs aren't showing, you might need to put this line at the top of your script:
import logging
logging.getLogger("solstice").setLevel(logging.INFO)
Source code in solstice/trainer.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
CheckpointingCallback
¤
Bases: Callback
Checkpoint the experiment state at the end of each epoch.
Todo
Implement this. Consider adding asynchronous checkpointing.
Source code in solstice/trainer.py
231 232 233 234 235 236 237 |
|
ProfilingCallback
¤
Bases: Callback
Uses the built-in JAX (TensorBoard) profiler to profile training and evaluation steps.
Note
To view the traces, ensure TensorBoard is installed. Then run
tensorboard --logdir=<log_dir>
. See
https://jax.readthedocs.io/en/latest/profiling.html for more information.
Source code in solstice/trainer.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
__init__(log_dir: str, steps_to_profile: list[int] | None = None) -> None
¤
Initialize the Profiler callback.
Tip
You can use the steps_to_profile
argument to profile only a subset of the
steps. Usually, step 0 will be slowest due to JIT compilation, so you might
want to profile steps 0 and 1.
Parameters:
-
log_dir
(
str
) –Directory to write the profiler trace files to.
-
steps_to_profile
(
list[int] | None
) –If given, only profile these steps, else profile every step. Defaults to None.
Source code in solstice/trainer.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
EarlyStoppingCallback
¤
Bases: Callback
Stops training early if a criterion is met. Checks once per validation epoch (at the end). This callback accumulates auxiliary outputs from each validation step into a list and passes them to the criterion function which determines whether to stop training.
Tip
If this callback doesn't suit your needs, you can implement your own early
stopping callback by raising an EarlyStoppingException
in the on_step_end
hook.
Source code in solstice/trainer.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
__init__(criterion_fn: Callable[[list[Any]], bool], accumulate_every_n_steps: int = 1) -> None
¤
Initialize the EarlyStoppingCallback.
Parameters:
-
criterion_fn
(
Callable[[list[Any]], bool]
) –Function that takes a list of the accumulated auxiliary outputs from each step and returns a boolean indicating whether to stop training.
-
accumulate_every_n_steps
(
int
) –Accumulate auxiliary outputs every nth step. Set to 2 to only keep half, 3 for keeping 1/3, etc. This effectively downsamples the signal (so beware it is losing information). Defaults to 1.
Example
Example criterion function takes the final metrics object, calls .compute()
on it to return a dictionary, and stops training if accuracy is > 0.9:
TODO: update example when solstice.reduce
is implemented
criterion fn = lambda metrics: metrics.compute()["accuracy"] > 0.9
Source code in solstice/trainer.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
train(exp: ExperimentType, num_epochs: int, train_ds: tf.data.Dataset, val_ds: tf.data.Dataset | None = None, callbacks: list[Callback] | None = None) -> ExperimentType
¤
Train a solstice.Experiment
, using tf.data.Dataset
for data loading.
Supply solstice.Callback
s to add any additional functionality.
Parameters:
-
exp
(
Experiment
) –Solstice experiment to train.
-
num_epochs
(
int
) –Number of epochs to train for.
-
train_ds
(
tf.data.Dataset
) –TensorFlow dataset of training data.
-
val_ds
(
tf.data.Dataset | None
) –TensorFlow dataset of validation data. If none is given, validation is skipped. Defaults to None.
-
callbacks
(
list[Callback] | None
) –List of Solstice callbacks. These can execute arbitrary code on certain events, usually for side effects like logging and checkpointing. See
solstice.Callback
. Defaults to None.
Returns:
-
Experiment(
ExperimentType
) –Trained experiment.
Source code in solstice/trainer.py
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
test(exp: Experiment, test_ds: tf.data.Dataset, callbacks: list[Callback] | None = None, return_outs: bool = False) -> list[Any] | None
¤
Test a solstice.Experiment
, using tf.data.Dataset
for data loading. Supply
solstice.Callback
s to add any additional functionality.
Parameters:
-
exp
(
Experiment
) –Experiment to test.
-
test_ds
(
tf.data.Dataset
) –TensorFlow dataset of test data.
-
callbacks
(
list[Callback] | None
) –List of Solstice callbacks. These can execute arbitrary code on certain events, usually for side effects like logging. See
solstice.Callback
. Defaults to None. -
return_outs
(
bool
) –If True, the auxiliary outputs from
exp.eval_step()
are accumulated into a list and returned, else this function returns nothing. Defaults to False.
Tip
Testing simply involves running through the test_ds for a single epoch. Thus
the on_epoch_start()
and on_epoch_end()
callback hooks are executed once
each, before testing starts and after testing ends.
Returns:
-
list[Any] | None
–list[Any] | None: List of auxiliary outputs from
exp.eval_step()
if return_outs is True, else None.
Source code in solstice/trainer.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
Utilities¤
Miscellaneous utilities for Solstice.
EarlyStoppingException
¤
Bases: Exception
A callback can raise this exception on_epoch_end
to break the training loop
early. Useful if you want to write a custom alternative to EarlyStoppingCallback
.
Source code in solstice/utils.py
52 53 54 55 56 |
|
replace(obj: Module, **changes: Any) -> Module
¤
Make out-of-place changes to a Module, returning a new module with changes
applied. Just a wrapper around equinox.tree_at
.
Example
You can use this in the same way as dataclasses.replace
, but it only works
with eqx.Module
s. The advantage is that it can be used when custom __init__
constructors are defined.
For more info, see https://github.com/patrick-kidger/equinox/issues/120.
import equinox as eqx
import solstice
class Counter(eqx.Module):
x: int
def __init__(self, z: int):
# 'smart' constructor inits x by calculating from z
self.x = 2 * z
def increment(self):
return solstice.replace(self, x=self.x+1)
C1 = Counter(z=0)
assert C1.x == 0
C2 = C1.increment()
assert C2.x == 1
Parameters:
-
obj
(
Module
) –Module to make changes to (subclass of
eqx.Module
). -
**changes
(
Any
) –Keyword arguments to replace in the module.
Returns:
-
Module(
Module
) –New instance of
obj
with the changes applied.
Source code in solstice/utils.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|